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Abstract: The area of smart homes is one of the most popular for deploying smart connected devices.
One of the most vulnerable aspects of smart homes is access control. Recent advances in IoT have led
to several access control models being developed or adapted to IoT from other domains, with few
specifically designed to meet the challenges of smart homes. Most of these models use role-based
access control (RBAC) or attribute-based access control (ABAC) models. As of now, it is not clear
what the advantages and disadvantages of ABAC over RBAC are in general, and in the context of
smart-home IoT in particular. In this paper, we introduce HABACα, an attribute-based access control
model for smart-home IoT. We formally define HABACα and demonstrate its features through two
use-case scenarios and a proof-of-concept implementation. Furthermore, we present an analysis
of HABACα as compared to the previously published EGRBAC (extended generalized role-based
access control) model for smart-home IoT by first describing approaches for constructing HABACα

specification from EGRBAC and vice versa in order to compare the theoretical expressiveness power
of these models, and second, analyzing HABACα and EGRBAC models against standard criteria for
access control models. Our findings suggest that a hybrid model that combines both HABACα and
EGRBAC capabilities may be the most suitable for smart-home IoT, and probably more generally.

Keywords: smart homes; IoT; access control

1. Introduction and Motivation

The Internet of Things (IoT) describes the network of physical objects (things) that are
embedded with sensors, software, and other technologies to connect and exchange data
with other devices and systems over the Internet [1]. IoT has been used in a wide variety
of applications, including infrastructure applications (smart cities, energy management),
consumer applications (smart homes, elder care), organizational applications (medical and
health care, vehicular communication systems), industrial applications (manufacturing,
agriculture), and military applications (Internet of Battlefield Things).

In 2017, the global market for the Internet of Things (IoT) surpassed USD 100 billion in
revenue for the first time, and forecasts suggest that the figure will rise to USD 1.6 trillion by
2025. As a result of such a prognosis, it is predicted that the technology will reach heights
that no one could imagine. However, with the growing popularity of IoT devices, there
will be an increase in IoT security concerns.

Smart homes are among the most popular areas for deploying smart connected devices.
They are changing our lifestyles. However, with new opportunities come new challenges.
Surprisingly little attention has been paid to access control policy specification and authentication
in home IoT. Smart homes differ from traditional computing domains in many notable ways [2].
Home-IoT users have complex social relationships and use the same devices. In addition,
most smart-home devices lack screens and keyboards, which makes them more convenient,
but makes access control management more difficult. Several real-world examples of the
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deficiencies of current policies and authentication procedures for controlling access to
home-IoT devices have emerged [2–4].

To attain the best results and minimize risks and threats, an organization must
select an appropriate access control model in light of its diverse structure, requirements,
and specifications. Several access control models have been described in the literature for
IoT in general, a few of which have been developed specifically for smart homes. Most of
the proposed IoT AC models are based on ABAC or RBAC. According to some researchers,
RBAC is better suited for IoT since it is easier to manage and review, whereas ABAC is
more challenging [5–7]. Other researchers assert that ABAC models are more scalable
and dynamic because they can capture information about different devices and contexts.
However, RBAC models can be extended to be dynamic and fine-grained. For example,
the recent EGRBAC (extended generalized role-based access control) model [8] for smart-
home IoT. EGRBAC can express environment and device characteristics and is suitable for
constrained home environments. Therefore, in the case of smart homes, it is not completely
clear what the advantages of ABAC over RBAC are, and vice versa.

In this paper, we introduce HABACα, an attribute-based access control model for
smart-home IoT. Our model is dynamic and fine-grained. It captures users, environment,
operations, and devices characteristics. We provide a detailed formal definition of our
model and illustrate its features through two use-case scenarios and a proof-of-concept
implementation.

Furthermore, we compare HABACα to the previously published EGRBAC model for
smart-home IoT [8]. We chose to compare HABACα against EGRBAC for the following
reason. EGRBAC is a dynamic contextual-aware RBAC-based access control model specifically
designed to meet smart-home challenges. Our primitive insight is that a hybrid approach
will better address smart-home IoT access control requirements, as this was the case
for some traditional access control domains. However, this insight needs to be further
explored by comparing RBAC and ABAC-based models specifically defined to meet
smart-home challenges. In addition, this comparison will serve as a guide in developing
appropriate hybrid models. Toward this goal, in this paper, we provide approaches
for constructing HABACα specification from EGRBAC and vice versa to compare the
theoretical expressiveness power of these models. Then, we evaluate these models against
standard criteria for access control models adapted from [9]

The paper is organized as follows. In Section 2, we provide an analysis and review of
related work, including an overview of EGRBAC [8]. In Section 3, we introduce the HABACα

model along with two use-case scenarios and a proof-of-concept implementation. Furthermore,
we conducted different test scenarios to depict the performance of our implementation. In
Section 4 we compare between EGRBAC and HABACα in terms of theoretical expressiveness
power. In Section 5 we conduct a comprehensive theoretical comparison between EGRBAC
and HABACα against standard criteria for access control models. Section 6 discusses the
insights of this work. Finally, Section 7 concludes the paper.

2. Related Work

Presently, IoT is one of the most researched topics in the literature. However, the entire IoT
ecosystem still faces security challenges, from manufacturers to users. A number of researchers
have studied IoT security and privacy issues [10–15]. Furthermore, some researchers have
investigated the security risks and design concerns of IoT frameworks [15–20]. Most researchers
generally accept that access control is a critical service in IoT.

The literature has presented many access control solutions (users to devices and/or
devices to devices) that apply to different IoT applications. In [21], the authors extensively
surveyed access control in IoT environments. However, few of them explicitly addressed
smart-home challenges.

Some solutions rely on RBAC [22,23] (as in [5,8,24–29]). Other solutions, however, rely
on ABAC [30,31]. For instance, the authors in [32] introduced an ABAC-based model that
focuses on device-to-device access control. However, they did not illustrate their model
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through a performance analysis or at least a use-case scenario. In [33,34] the authors focused
on providing sophisticated attribute-based encryption (ABE) models for smart grids, while
they did not discuss the ABAC models that they consider. Additionally, for computationally
constrained smart-home devices, an ABE model may not be appropriate. In [35] the authors
introduced a formalized dynamic and fine-grained ABAC model for smart cars, which
does not apply to the smart-home case. Recently, Bhatt et al. [36] proposed a conceptual
attribute-based access control and communication control model for IoT. However, their
access control model does not capture environment attributes. Our proposed HABACα

model is an ABAC-based model that is dynamic and fine-grained. Moreover, it captures
the characteristics of users, environments, operations, and devices.

Some researchers argue that contrary to ABAC-based models, RBAC-based models fail
to capture changing characteristics such as environment attributes (time of the day, weather
information) and device characteristics (device type, device state). However, the authorization
process in RBAC is much simpler. Therefore, a combined access control model has been
proposed by [6].

Additionally, the literature proposes several models that are based on blockchain
technology [37–41]. However, as described by [39], blockchain technology possesses some technical
characteristics that could limit its application, such as processing time and cryptocurrency fees.
Only a few solutions based on UCON [42–44] have been presented in the literature, e.g., [45–47].
There have been some other access control models proposed for the Internet of Things.
For example, in [48] the authors presented a certificate-based device access control scheme
in an IoT environment. Researchers in [7,21,49–51] conducted surveys on different IoT
access control models in the literature.

The authors of [2] presented a new perspective on home-IoT access control policies.
They argued that smart-home IoT has unique characteristics that necessitate a rethinking
of access control. However, few solutions in the literature are proposed specifically to
meet smart-home IoT challenges. Here are some examples. In [32], the authors provided
a device-to-device ABAC access control framework for smart homes. The authors in [24]
introduced an RBAC-based access control model for aware homes. Moreover, in [52]
the authors used identity-based encryption to implement a function-based access control
model in smart homes. In [53], the authors proposed a protocol for authentication and
key exchange in smart homes. Researchers in [54] developed a high-level access control
mechanism for a multi-user and multi-device smart-home environment.

Based on analysis by He et al. [2] and a survey by Ouddah et al [21], Ameer et al [8] recently
presented criteria for home-IoT access control models. Moreover, the same authors proposed
the EGRBAC model. It is a policy model for smart-home IoT access control, which is based
on RBAC and conforms to both of the [2,8] characteristics. As opposed to traditional RBAC,
EGRBAC captures contextual environmental changes and different devices characteristics.
Therefore, it refutes the argument that RBAC-based models are unsuitable and rigid when
dealing with changes in the environment and device or permissions characteristics. Therefore,
it is not entirely clear what the advantages of ABAC over RBAC are, and vice versa, in the
setting of home IoT. In this paper, we analyze HABACα (our proposed ABAC-based model)
compared to EGRBAC [8] (a dynamic, fine-grained RBAC-based model), and vice versa. We
briefly review this model below since it is relevant to Sections 4.1 and 4.2.

2.1. Background: EGRBAC Model

Ameer et al introduced the extended generalized role-based access control model [8].
It is a dynamic, fine-grained RBAC-based model that grants access based on the specific
permission required rather than at device granularity. In addition to the usual concept of
user roles, EGRBAC incorporates the notion of device roles and environment roles. This is
illustrated in Figure 1.
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Figure 1. EGRBAC model components.

EGRBAC uses the familiar User (U), Role (R), and Session (S) sets in RBAC [22,23].
The term “user” refers to a person who uses smart-home devices as authorized. Roles (R)
are similar to the traditional RBAC user roles. Nevertheless, in the case of smart homes,
a role explicitly represents the relationship between a user and his or her family. Roles
are assigned to different users through the many-to-many relationship UA. The system
allows users to establish sessions to activate a subset of the roles they have been assigned
to. A user may have more than one session active at the same time. SU is a many-to-one
relationship that maps each session to its unique, controlling user. SR is a many-to-many
relationship that maps each session to the set of roles associated with it.

A Device (D) is a smart-home device such as a smart door lock. Operations (OP) represent
actions performed on devices according to manufacturer specifications. A permission is an
approval to perform an operation on one device, i.e., it is a device–operation pair. Furthermore,
as a way of categorizing permissions for different devices, device roles (DR) are defined.
For example, we can categorize the dangerous permissions of various smart devices by
creating a device role called dangerous devices and assigning dangerous permissions (such as
turning on the oven, turning on the mower, and opening and closing the front door lock) to it.
The many-to-many PDRA relationship specifies this assignment.

Environmental contexts, such as daytime/nighttime and winter/summer, are captured
through the environment roles (ER) component. Environment roles are turned on/off (i.e.,
triggered) by environment conditions (EC). EA maps each environment role eri to the
subset of related environment conditions ECi. It implies that when each eci ∈ ECi is
active, the environment role eri is also active. For example, suppose the environment role
Entertainment_Time should be active on weekend evenings. To express this environment
role in EGRBAC, we create the environment condition weekends, which will be active
during the weekend, and the environment condition evenings, which will be active during
the evening and add the relationship ({weekends, evenings}, Entertainment_Time) to the
set EA.

Each role pair rpi ∈ RP combines a role and a subset of environment roles. A role
pair rp has a role part rp.r that is the single role associated with rp, and an environment
role part rp.ER denotes the set of environment roles associated with rp and is a subset of
ER. RPRA associates each role to one or more role pairs. RPEA associates each role pair
to a subset of ER. A role pair rpi is active, when each environment role eri in the set of
environment role ERi is active, where ERi is associated with rpi through the relation RPEA.

All these components are brought together by RPDRA, which assigns device roles
to role pairs. Therefore, for each role pair rp, the single role associated with it through
RPRA rp.r can access all device roles assigned to it through RPDRA, as long as the set of
environment roles associated with rp through RPEA, which is rp.ER is active.
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Essentially, the basic idea in EGRBAC is that a user is assigned a subset of roles and,
according to the current active roles in a session and the current active environment roles,
some role pairs will be active, giving the user access to the permissions assigned to the
device roles assigned to the currently active role pairs. Figure 1 illustrates EGRBAC.

EGRBAC describes three types of constraints. (a) Permission–role constraints. These
constraints prevent specific roles from accessing specific permissions during assignment
time. This type of constraint is applied to the RPDRA relationship. For example, if we have
a permission–role constraint prci, where prci = ({(Oven, On)}, {Kids}). This constraint
prevents any rpdrai assignment relation from being added to the set RPDRA, if rpdrai gives
the role Kids access to the permission (Oven, On). (b) Static Separation of Duty (SSD) is the
familiar SSD in RBAC. It enforces constraints on the assignment of users to roles. This type
of constraint is applied to the UA relationship. (c) Dynamic Separation of Duty (DSD) is the
familiar DSD in RBAC. With DSD, it is permissible for a user to be authorized as a member
of a set of roles that do not constitute a conflict of interest when acted independently but
produce policy concerns when allowed to be acted simultaneously [55] in the same session.
This type of constraint is applied to the SR relationship.

3. H ABACα Model for Smart-Home IoT

Models based on ABAC are arguably well-suited for sophisticated domains, such as
smart homes. By using attributes of users, sessions (subjects), environments, operations,
and objects, they can specify dynamic, flexible, and fine-grained authorization policies.
This section introduces our HABACα (Home-IoT Attribute-Based Access Control) model.
This model governs smart-home user-to-device interactions.

3.1. Formal Definition

The HABACα model is inspired by [31,56]. The basic model components are illustrated
in Figure 2 and are formally defined in Tables 1 and 2. It consists of four sets as follows: Users
(U), Environment States (ES), Operations (OP), and Devices (D). These sets are presented
in ovals. Moreover, attribute functions are presented in squares. We have four attribute
functions, User/Session Attributes (USA), Environment-State Attributes (ESA), Operation
Attributes (OPA), and Device Attributes (DA). The rectangles indicate two types of constraints:
constraints on user attributes and constraints on session attributes.

Figure 2. HABACα Model.
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Table 1. HABACα Model formalization part I: basic components.

Basic Sets and Functions
– U is a finite set of users (homeowner-specified)
– S is the set of sessions (each session is created, terminated and controlled by an individual user)
– S is the set of sessions (each session is created, terminated and controlled by an individual user)
– The function user(s) : S→ U maps each session to its unique creator and controlling user
– D is the set of devices deployed in the smart home (homeowner-deployed)
– OP is the set of possible operations on devices (device manufacturer-specified)
– The function ops : D → 2OP specifies the valid operations for each device (device manufacturer-specified)
– ES = {current} is a singleton set where current denotes the environment at the current time instance
Attribute functions and values
– USA, DA, OPA and ESA are sets of user/session, device, operation and environment-state attribute functions respectively, where for convenience we require USA, DA, OPA and ESA to be

mutually exclusive
– Each session s inherits a subset of the attribute functions in USA from its unique user creator (controlled by the session creator user(s)). For every inherited attribute function att ∈ theUSA,

att(s) = att(user(s)) at all times unless otherwise specified use of a non-inherited session attribute in a logical formula renders that formula false
– For each attribute att in USA ∪ DA ∪OPA ∪ ESA, Range(att) is the attribute range, a finite set of atomic values
– attType : USA ∪ DA ∪OPA ∪ ESA→ {set, atomic}.
– Each att ∈ theUSA ∪ DA ∪OPA ∪ ESA correspondingly maps users in U / sessions in S, devices in D, operations in OP or the environment-state current to atomic or set attribute values.

Formally:

att : U or S or D or OP or {current} →
{

Range(att), if attType(att) = atomic
2Range(att), if attType(att) = set

– Every att ∈ theUSA ∪ DA ∪OPA ∪ ESA, att is designated to be either a static or dynamic attribute where dynamic attributes must have corresponding sensors deployed in the smart home
(under homeowner control)

– Static attribute ranges and values are set and changed by administrator actions (by homeowner or device manufacturer)
– Dynamic attribute ranges and values automatically determined by sensors deployed in the smart home (under homeowner control)
Constraints
– UAConstraint ⊆ UAP× 2UAP is the user attribute constraints relationship (homeowner-specified) where

UAP = {(usa, v) | usa ∈ theUSA ∧ v ∈ Range(usa))}

Each uac = ((usax, vy), UAPj) ∈ UAConstraint specifies the following invariant:{
(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[usax(ul) = vy ⇒ usam(ul) 6= vn], if attType(usax) = attType(usam) = atomic
(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[vy ∈ usax(ul)⇒ vn /∈ usam(ul)], if attType(usax) = attType(usam) = set
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Table 1. Cont.

– SAConstraint ⊆ UAP× 2UAP is the session attribute constraints relationship (homeowner-specified) Each sac = ((usax, vy), UAPj) ∈ SAConstraint specifies the following invariant:
(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ usax(user(sl)) = vy ∧ usam(user(sl)) = vn ⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = atomic
(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ vy ∈ usax(user(sl)) ∧ vn ∈ usam(user(sl))⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = set

Attributes Authorization Function
– Authorization(s : S, op : OP, d : D, current : ES) is a logic formula defined using the grammar of Table 2 (homeowner-specified). It is evaluated for a specific session si, operation opk, device dj

and environment-state current as specified in Table 2

CheckAccess Predicate
– CheckAccess is evaluated when session si attempts operation opk on device dj in context of environment-state current
– CheckAccess(si, opk, dj, current) evaluates to true or false using the following formula: opk ∈ ops(dj) ∧ Authorization(si, opk, dj, current))

Table 2. HABACα Model formalization part II: attribute authorization function.

Attribute authorization function
– Authorization(s : S, op : OP, d : D, current : ES) is a first-order logic formula specified using the following grammar.

• α ::= term | term ∧ term | term ∨ term | (term) | ¬term | ∃x ∈ set.α | ∀x ∈ set.α
• term ::= set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic
• setcompare ::=⊂|⊆|6⊆
• atomiccompare ::=<|=|≤
• set ::= usa(s) | opa(op) | esa(current) | da(d), where attType(usa) = attType(opa) = attType(esa) = attType(da) = set
• atomic ::= usa(s) | opa(op) | esa(current) | da(d) | value, where attType(usa) = attType(opa) = attType(esa) = attType(da) = atomic

– For a specific session si, device dj and operation opk, the authorization function Authorization(si, opk, dj, current) is evaluated by substituting the actual attribute values of usa(si), da(dj),
opa(opk) and esa(current) for the corresponding symbolic placeholders and evaluating the resulting logical formula to be true or false. Any term that references an undefined attribute value is
evaluated as false
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3.1.1. Basic Sets and Functions

User set (U) refers to human beings communicating directly with smart objects (things).
The system allows users to create sessions during which they can perform some operations
on the system. Sessions (S) operate similarly to subjects in [31]. Only the user who initiates
the session has the authority to terminate it. Each session s is associated with its unique
user creator by the function users(s).

Devices (D) refer to smart-home devices (smart things); for instance, smart TV. Operations
(OP) are activities performed on devices in accordance with manufacturer specifications.
The function ops(d) maps each device d to the set of valid operations on d.

The Environment States set (ES = {current}) is a singleton set that only includes
the state “current”. The state current denotes the picture of the environment at the
current time instant. However, future extensions of this component, for instance, may be
ES = {current, yesterday, lastweek}, which include other instants of time such as yesterday
and last week. However, such generalization requires a careful investigation on how we
will track time and to what extent.

3.1.2. Attribute Functions and Values

Each of the users, sessions, environment states, devices, and operations possess
characteristics that are expressed as their attributes. An attribute is a function that takes an
element such as a user and returns a certain value from its range. User/Session attribute
functions set (USA) is the set of attributes associated with both users and sessions. Each
session s inherits a subset of the attributes of its unique user creator. This is controlled
by the unique user creator user(s). If a session s inherited a user session attribute usa
from his user user(s), then it is required that usa(s) = usa(user(s)). The device attribute
functions set (DA) consists of attributes related to smart devices, such as “kitchen devices”
and “Alex devices”. The operation attribute functions set (OPA) is a collection of attributes
corresponding to different operations. For example, if you wish to characterize kid-friendly
operations, you may create an operation attribute entitled “Kid-Friendly Operations” and
associate it with those operations. Environment-state attribute functions set (ESA) describes
the environment condition of the current instance of time. For example, “day”, “time”, and
“weather condition”.

To better demonstrate the concept of attributes, we will use the use case illustrated
in Figure 3. We should mention that this use case is incomplete since it does not contain
an authorization function. However, the main purpose is to illustrate the concept of
attributes. In this use case, we have three users bob, alex, and anne. The user/session
attribute function Relationship captures the user relationship to the home. From Figure 3
we can notice that bob is the parent, alex is the kid, and anne is the teenager in the house.
The user/session attribute function UserLocation captures the user’s current location inside
the house. Moreover, we have four devices TV, Oven, Fridge, and FrontDoor. We have one
device attribute function DangerouseKitchenDevices. DangerouseKitchenDevices captures
whether the device is a dangerous kitchen device or not. Finally, we have two environment-
state attribute functions, day and UsersInTheHouse, which capture the current day and
users inside the house, respectively.

The main reason for using different sets of attribute functions for different components
in our model is that different components have different attribute functions. For instance,
the user/session attribute function Relationship is not relevant to the set of devices D.
Moreover, the device attribute function DangerouseKitchenDevices does not apply to the
set of users. We cannot consider a specific user as a dangerous kitchen device; the evaluation
DangerouseKitchenDevices(bob) is not semantically correct.

Basically, an attribute range is composed of a finite set of atomic values. Each attribute
function atti has a range Range(atti), where Range(atti) represents the range of values to which
the attribute function atti can be evaluated. For example, in Figure 3, the user/session attribute
function Relationship range is {parent, kid, teenager}, the user/session attribute function
UserLocation range is {Bedroom1, Bedroom2, Gameroom, Kitchen, Livingroom, Bathroom1,
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Bathroom2}. Similarly, the device attribute function DangerouseKitchenDevices range is
{True, False}, the environment-state attribute function day range is {S, M, T, W, Th, F, Sa},
and finally the environment-state attribute function UsersInTheHouse range is the set of
users U.

Each attribute function is an atomic-valued attribute or a set-valued attribute. An atomic-
valued attribute will return exactly one value from its range. In the use case given in
Figure 3, the user/session attribute functions Relationship and UserLocation are both
atomic-valued attributes since they map different users into one value only from the
attribute range. The device attribute function DangerouseKitchenDevices is an atomic-
valued attribute too. It takes one device as an input and returns only one value from
the attribute function range as an output, either True or False, since one device cannot be
dangerous and non-dangerous at the same time. Similarly, the environment-state attribute
function day is an example of an atomic-valued attribute.

On the other hand, a set-valued attribute will return a subset of the range, and not only
one value from the range as in the case of atomic-valued attribute functions. For instance,
in the use case given in Figure 3, the environment-state attribute function UsersInTheHouse
is a set-valued attribute. UsersInTheHouse attribute function has a range equal to the set of
users U, and it maps the environment state to a subset of values from that range. It returns
a set with the names of users who are currently inside the house.

Moreover, we distinguish between two types of attributes: static and dynamic. All
attributes indeed may change over a long time. However, some attributes are “relatively”
static, as they tend to remain static (they evaluate to the same values) over a long period
of time. Setting and changing the values of static attributes may require administrator
intervention. For example, in our use case, the user/session attribute function Relationship
is considered static. To further illustrate this, let us consider the user alex. The attribute
function Relationship, in this case, evaluates to kid, which tends to remain constant for a
long time till alex grows up and becomes a teenager, at which point an administrator action
is required to change the value of this attribute to teenager; as a result, Relationship(alex)
will evaluate to teenager. Similarly, DangerouseKitchenDevices is considered a static device
attribute too.

On the other hand, dynamic attributes are always changing due to various circumstances, such
as time of the day, user location, etc. In our use case, UserLocation, day, and UsersInTheHouse
are all considered to be dynamic attributes. Values of dynamic attributes are automatically
determined by sensors deployed in the smart home and under homeowner control.

User/session attribute functions, device attribute functions, operation attribute functions,
and environment-state attribute functions can all be classified as static or dynamic attribute
functions. Moreover, all attribute functions can be classified as static or dynamic, whether
atomic-valued or set-valued. However, the differentiation between static and dynamic attribute
functions is unnecessary for how the model works formally. The process for triggering different
attributes is outside the scope of our model.

Operation and device attribute functions are partial functions. Hence, some devices or
operations will not be associated with some attributes. User/Session and environment-state
attributes, on the other hand, are total functions.

In mathematics, a partial function f from a set X to a set Y is a function from a subset
S of X (possibly X itself) to Y [57]. Since operation attribute functions and device attribute
functions are defined as partial functions, in the use case illustrated in Figure 3, the device
attribute function DangerouseKitchenDevices does not have to map each device d in the
set of devices D into a value from the range {True, False}. The DangerouseKitchenDevices
attribute function only maps the devices Oven and Fridge into the values True and False
respectively. However, it does not map the devices TV and FrontDoor into any value.
In other words, DangerouseKitchenDevices(TV) will be evaluated to be undefined.
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On the other hand, total functions are defined for all elements in its domain. That
being said, any static or dynamic attribute function att in the set of user/session attribute
functions USA is defined for every user ui in the set of users U. For instance, the user/
session attribute function Relationship is defined for every user u in the set of users U.
Moreover, any static or dynamic environment-state attribute function att in the set of
environment-state attribute functions ESA is defined for every environment state es in the
set of environment state ES.

U = {bob, alex, anne},
USA = {Relationship, UserLocation}
Relationship : u : U → {parent, kid, teenager}
Relationship : s : S→ {parent, kid, teenager}
UserLocation : u : U → {Bedroom1, Bedroom2, Gameroom, Kitchen, Livingroom,

Bathroom1, Bathroom2}
UserLocation : s : S→ {Bedroom1, Bedroom2, Gameroom, Kitchen, Livingroom,

Bathroom1, Bathroom2}
Relationship(bob) = parent
Relationship(alex) = kid
Relationship(anne) = teenager

D = {TV, Oven, Fridge, FrontDoor}
DA = {DangerouseKitchenDevices}
DangerouseKitchenDevices : d : D → {True, False}
DangerouseKitchenDevices(Oven) = True
DangerouseKitchenDevices(Fridge) = False

All other values are undefined

ES = {Current}
ESA = {day, UsersInTheHouse}
day : es : ES→ {S, M, T, W, Th, F, Sa}
UsersInTheHouse : es : ES→ 2U

Figure 3. Attributes Use Case.

3.1.3. Constraints

These are invariants that must never be violated. There are two types of constraints defined
by HABACα. First is constraints on user attributes. These constraints impose restrictions on
user attributes. In other words, if a specific attribute value is assigned to a user, the user
is prohibited from being assigned to another attribute value. For example, consider the
following user attribute constraint:

uaci = ((Relationship, kid), {(Adults, True)})

The above constraint implies that for any user u if Relationship(u) = kid, then it is
required that Adults(u) 6= True.

The second type of constraint is constraints on session attributes. These constraints
restrict the attributes that may be used in sessions. Here, it is permissible for a user to
be assigned to different attribute values that do not constitute a conflict of interest when
inherited independently by different sessions but produce policy concerns when allowed
to be inherited together in the same session.

The concept of constraints is an integral part of HABAα, and it is a powerful mechanism
for laying out higher-level policy. When specific attribute values are declared to be mutually
exclusive, there is less concern about assigning conflicting or mutually exclusive attribute
values to individual users. HABACα is an operational access control model. Managing and
enforcing constraints is part of the administrative access control, which is outside the scope
of this manuscript.
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3.1.4. Attributes Authorization Function

A two-valued Boolean function is evaluated for each access decision. It is defined
using the grammar of Table 2. For a specific session si, operation opk, and device dj the
authorization function Authorization(si, opk, dj, current) is evaluated by substituting the
actual attribute values of usa(si), da(dj), opa(opk) and esa(current) for the corresponding
symbolic placeholders and evaluating the resulting logical formula to be true or false. Any
term that references an undefined attribute value is evaluated as false.

The term refers to any atomic logical declarative sentence. An atomic sentence is a
type of declarative sentence that is either true or false and which cannot be broken down
into other simpler sentences [58]. Consider Use Case A for more illustration.

HABACα is an operational access control model. Authorization function creation,
check, and management tasks are considered part of administrative access control, hence
outside the scope of this model.

3.1.5. Check Access Predicate

The CheckAccess predicate is evaluated in each access request. When a session si attempts
operation opk on device dj in the context of environment-state current the CheckAccess
(si, opk, dj, current) predicate evaluates to be true if the following conditions are satisfied:

1. The operation opk is assigned to the device dj by the device manufacturer.
2. The authorization function is evaluated to be true.

3.2. Use Cases

In this section, we describe two use cases to illustrate the components and configurations
of HABACα.

3.2.1. Use Case A

In this use case, the goals are as follows: (a) Kids should be allowed to use kid-
friendly operations on entertainment devices (G and PG contents on TV, A3 (games for
group aged below three years old), and A7 (games for children under the age of seven)
on PlayStation) during a specific time (weekend afternoons and evenings, and weekday
evenings). (b) Teenagers should only be permitted to use dangerous kitchen devices (Oven)
if one of their parents is present in the kitchen. (c) Provide teenagers with unconditional
permission to use non-dangerous kitchen devices (Fridge). (d) Provide teenagers with
unconditional access to entertainment devices. (e) Parents should be permitted to use any
operation on any device without restrictions.

Figure 4 illustrates how HABACα can be configured to achieve these objectives. Here,
we have five users, bob, alex, suzanne, john, and anne with user attribute Relationship
respectively assigned to the values parents, kids, kids, teenagers, and teenagers. Upon creation
of a session s, this session will automatically inherit a subset of attributes from user(s). There
are five devices TV, PlayStation, Oven, Fridge and FrontDoor. Oven, and Fridge are assigned
the following device attributes by the house owner Fridge ← (DangerouseKitchenDevices:
False), and Oven ← (DangerouseKitchenDevices: True). There are 12 operations G, PG,
A3, A7, A12, BuyGames, ON, OFF, Open, Close, Lock, and Unlock. These operations are
assigned to operation attributes as follows: (G, A3, and A7) ← (KidsFriendly: True),
while (PG, A12, BuyGames) ← (KidsFriendly : False). Since device attribute functions
and operation attribute functions are partial functions, all other operations and devices
attributes values are undefined. Any term that references an undefined attribute value is
evaluated as false. The environment-state current has three attribute functions (day, time, and
ParentInKitchen).

The authorization function is a disjunction of five propositional statements. The
disjunctions between different propositional statements are marked red for semantic
illustration purposes only. In the first statement, children have access to kid-friendly
operations on weekday evenings or weekends in the afternoons and evenings. Here,
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we have six terms (atomic declarative sentences) which are: (a) Relationship(s) = kid,
(b) day(current) ∈ {Sa, S}, (c) 12:00 ≤ time(current) ≤ 19:00, (d) day(current) ∈ {M, T, W,
Th, F}, (e) 17:00 ≤ time(current) ≤ 19:00, (f) KidsFriendly(op) = True. In the second
propositional statement, teenagers are only permitted access to dangerous kitchen devices
when one of their parents is present in the kitchen. Here, we have three terms, which are:
(a) Relationship(s) = teenager, (b) ParentInKitchen(current) = True, (c) DangerouseKitchen
Devices(d) = True. The third statement permits teenagers to use non-dangerous kitchen
devices unconditionally. It contains two terms, which are: (a) Relationship(s) = teenager
(b) DangerouseKitchen Devices(d) = False. According to the fourth statement, teenagers
are allowed to access both kid-friendly and non-kid-friendly operations without restriction.
It contains three terms, which are: (a) Relationship(s) = teenager, (b) KidsFriendly(op) =
True, (c) KidsFriendly(op) = False. Finally, the fifth statement guarantees parents access to
anything at any time and contains one term: (a) Relationship(s) = parent.

U = {bob, alex, suzanne, anne, john},
USA = {Relationship}
Relationship : u : U → {parent, kid, teenager}
Relationship : s : S→ {parent, kid, teenager}
Relationship(alex) = Relationship(suzanne) = kid
Relationship(anne) = Relationship(john) = teenager
Relationship(bob) = parent

D = {TV, PlayStation, Oven, Fridge, FrontDoor}
DA = {DangerouseKitchenDevices}
DangerouseKitchenDevices : d : D → {True, False}
DangerouseKitchenDevices(Oven) = True
DangerouseKitchenDevices(Fridge) = False

All other values are undefined

ES = {Current}
ESA = {day, time, ParentInKitchen}
day : es : ES→ {S, M, T, W, Th, F, Sa}
time : es : ES→ {x|x is an hour of a day }
ParentInKitchen : es : ES→ {True, False}

OPTV = {G, PG}
OPPlayStation = {A3, A7, A12, BuyGames}
OPOven = {ON, OFF}
OPFridge = {Open, Close}
OPFrontDoor = {Lock, Unlock}
OP = OPTV ∪OPPlayStation ∪OPOven ∪OPFridge ∪OPFrontDoor
OPA = {KidsFriendly}
KidsFriendly : op : OP→ {True, False}
KidsFriendly(G) = KidsFriendly(A3) = KidsFriendly(A7) = True
KidsFriendly(PG) = KidsFriendly(A12) = KidsFriendly(BuyGames) = False

All other values are undefined

Authorization(s : S, op : OP, d : D, current : ES) ≡
(Relationship(s) = kid∧ ( (day(current) ∈ {Sa, S} ∧ 12:00 ≤ time(current) ≤ 19:00 ) ∨
( day(current) ∈ {M, T, W, Th, F} ∧ 17:00 ≤ time(current) ≤ 19:00) )∧

KidsFriendly(op) = True) ∨
(Relationship(s) = teenager ∧ ParentInKitchen(current) = True∧

DangerouseKitchenDevices(d) = True) ∨
(Relationship(s) = teenager∧ DangerouseKitchenDevices(d) = False) ∨
(Relationship(s) = teenager∧ (KidsFriendly(op) = True ∨ KidsFriendly(op) = False)) ∨
(Relationship(s) = parent)

Figure 4. Use Case A configuration.
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3.2.2. Use Case B

The objectives of this use case are as follows: (a) Kids should be allowed to use kid-
friendly operations on the iPad (A5, and A8 contents (applications for the group aged below
five years old and below eight years old, respectively) during a specific time (weekends
afternoons and evenings, and weekdays evenings). (b) If a parent is not present in the house,
a teenager should not use dangerous devices (FrontDoor). (c) Give teenagers unconditional
access to the iPad. (d) Parents should be permitted to use any operation on any device
without restrictions.

Figure 5 illustrates how HABACα can be configured to achieve these objectives. Here,
we have three users, bob, suzanne, and john with user attribute Relationship respectively
assigned to the values parents, kids, and teenagers. Upon creation of a session s, this
session will automatically inherit a subset of attributes from user(s). There are three
devices iPad, FrontDoor and lawnMower. FrontDoor is assigned to the following device
attributes by the house owner FrontDoor ← (DangerouseDevices : True). There are nine
operations A5, A8, A11, Games, Movies, ON, OFF, Lock, and Unlock. These operations
are assigned to operation attributes as follows: (A5 and A8) ← (KidsFriendly : True),
while (A11, Games, and Movies)← (KidsFriendly : False). Since device attribute functions
and operation attribute functions are partial functions, all other operations and devices
attributes values are undefined. Any term that references an undefined attribute value is
evaluated as false. The environment-state current has three attribute functions (day, time,
and ParentInTheHouse).

The authorization function is a disjunction of four propositional statements configured
to maintain the four objectives of this use case.

3.3. Proof-of-Concept Implementation
3.3.1. Enforcement Architecture

HABACα is an abstract policy model that can be used with different enforcement
models. Each enforcement model can use different implementation models which incorporate
different underlying technologies.

Here, we adopted the smart-home IoT enforcement architecture shown in Figure 6,
which was first introduced by Geneiatakis et al. [59]. According to this architecture, IoT
devices are directly connected to a corresponding hub. Thus, other devices and users
cannot access them directly. Here, there are two types of access. Local access provides users
with direct access to the IoT devices through the connectivity services provided by the hub.
Remote access allows users to access IoT devices remotely via cloud services. These cloud
services then communicate with the smart hub over the Internet.

Moreover, we used the Amazon Web Services (AWS) IoT service [60] as an implementation
technology to implement Use Case A presented in Section 3.2. However, in our enforcement,
we only handled local access.

First, we created an AWS account, then we configured and deployed Greengrass [61].
Through Greengrass SDK (Software Development Kit), cloud capabilities can be extended
to the edge, which is the smart home. Hence, Greengrass acts as a hub and a policy engine
within the smart home. Greengrass was installed on a dedicated virtual machine with
one virtual CPU, two GB of RAM, and running on Ubuntu server 18.04 LTS. Second, we
simulated the five users (the devices which users use to access the smart things, e.g., their
phones) and the five devices (the smart things that users want to access) of Use Case A using
the AWS IoT device SDK for Python [62] provided by AWS on different virtual machines.
Each machine has one virtual CPU and two GB of RAM running Ubuntu server 18.04.5 LTS.
Third, we created one virtual object (digital shadow) for each physical device (smart thing
devices needing access or a user access device) using the AWS IoT management console.
Each physical device is cryptographically linked to its shadow by a digital certificate
accompanied by authorization policies. Devices and users communicate with the AWS
IoT service using MQTT protocol [63] with TLS security [64]. The MQTT standard is a
lightweight machine-to-machine (M2M) publish/subscribe messaging protocol designed
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explicitly for use by constrained devices. Each shadow has a set of predefined MQTT
topics/channels to interact with other IoT devices and applications.

U = {bob, suzanne, john},
USA = {Relationship}
Relationship : u : U → {parent, kid, teenager}
Relationship : s : S→ {parent, kid, teenager}
Relationship(bob) = parent
Relationship(suzanne) = kid
Relationship(john) = teenager

D = {iPad, lawnMower, FrontDoor}
DA = {DangerouseDevices}
DangerouseDevices : d : D → {True, False}
DangerouseDevices(FrontDoor) = True

All other values are undefined

ES = {Current}
ESA = {day, time, ParentInTheHouse}
day : es : ES→ {S, M, T, W, Th, F, Sa}
time : es : ES→ {x|x is an hour of a day }
ParentInTheHouse : es : ES→ {True, False}

OPiPad = {A5, A8, A11, Games, Movies}
OPlawnMower = {ON, OFF}
OPFrontDoor = {Lock, Unlock}
OP = OPiPad ∪OPlawnMower ∪OPFrontDoor
OPA = {KidsFriendly}
KidsFriendly : op : OP→ {True, False}
KidsFriendly(A5) = KidsFriendly(A8) = True
KidsFriendly(A11) = KidsFriendly(Games) = KidsFriendly(Movies) = False

All other values are undefined

Authorization(s : S, op : OP, d : D, current : ES) ≡
(Relationship(s) = kid∧ ( (day(current) ∈ {Sa, S} ∧ 12:00 ≤ time(current) ≤ 19:00 ) ∨
( day(current) ∈ {M, T, W, Th, F} ∧ 17:00 ≤ time(current) ≤ 19:00) )∧

KidsFriendly(op) = True) ∨
(Relationship(s) = teenager ∧ ParentInTheHouse(current) = True∧

DangerouseDevices(d) = True) ∨
(Relationship(s) = teenager∧ (KidsFriendly(op) = True ∨ KidsFriendly(op) = False)) ∨
(Relationship(s) = parent)

Figure 5. Use Case B configuration.

3.3.2. Use Case A Enforcement

To enforce Use Case A, we created four json files as follows, UsersAttributes.json,
DevicesAttributes.json, OperationAttributes.json, and EnvironmnetAttributes.json to
capture different users/session attributes, devices attributes, operations attributes, and
environment attributes, respectively. How to automatically update different attributes
values in these files is outside the scope of this work. Moreover, we used the AWS IoT
lambda function to receive different user requests, analyze those requests according to
the contents of the json files, allow or deny the requested accesses, and then trigger
the corresponding devices to carry out the desired action. The code is written in Python 3.7
and runs on a long-lived lambda function with a memory limit of 500 MB and a timeout of
30 s.
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Figure 6. Enforcement architecture [59].

3.3.3. Local Communication Handling

Figure 7 depicts the sequence of actions in our local communication implementation.
Sequence (a) illustrated in red demonstrates the sequence of actions when a request
is denied. Sequence (b) in green illustrates the sequence of actions when a request
is authorized. For instance, if the user wishes to turn on the smart oven using his
smartphone from inside the house, first, through the publish/subscribe relationship
between the user’s phone and the local shadow, a request is initially sent via MQTT protocol
to the virtual object (or local shadow) corresponding to the user phone in Greengrass.
Upon receiving the request, the local shadow sends the message to the lambda function
using the MQTT publish/subscribe protocol. After that, the lambda function analyzes the
request based on UsersAttributes.json, DevicesAttributes.json, OperationAttributes.json,
and EnvironmnetAttributes.json files and makes the decision.

If the request is denied, the lambda function publishes to the user’s shadow update
topic. When the local shadow becomes aware of this, it updates the user’s phone. During
this scenario, the smart oven does not receive any indication that someone is attempting to
access it. In the event that the request is granted, the local shadow of the smart oven will be
notified through its update topic, and the smart oven will be updated accordingly. Once
the oven is turned on, it publishes a message to the shadow update topic. A notification is
sent from the oven’s local shadow to the lambda function, which in turn notifies the user
phone’s local shadow. As a final step, the shadow of the user’s phone informs the user’s
phone that the smart oven has been turned on successfully.

3.3.4. Performance Results

In this section, we evaluate the performance of our implementation by conducting
multiple test cases. We examined three different situations with three different sets of
requests. Each set of requests was executed ten times to determine the average lambda
processing time.
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Figure 7. Local Request handling in our system.

Table 3 shows the average lambda function execution time measured when one user
sends requests to more than one device at once. The first row shows the average lambda
execution time when Bob requests to lock the front door lock. The second row shows the
average lambda execution time when Bob requests to lock the front door lock, turn on the
TV, and turn on the PlayStation simultaneously. Finally, the third row shows the average
lambda execution time when Bob requests to lock the front door lock, open the fridge, and
turn on the oven, the TV, and the PlayStation. All the requests were approved as they were
supposed to according to our configured policies.

Table 3. One user sending requests to multiple devices.

Number of Users Number of Devices Lambda Processing Time in ms Total Number of Requests

1 1 1.4671 10

1 3 1.33123 30 (10 per request)

1 5 1.34384 50 (10 per request)

The values presented in Table 4 represent the measured average execution time of
the lambda function when multiple users are sending requests to multiple devices at the
same time (one user per device). The first row describes the average execution time when
the parent Bob requests to lock the front door lock. The second row shows the execution
time when Bob requests to lock the front door lock, the kid Alex requests to turn on the
oven, and the teenager Anne requests to open the fridge simultaneously. Additionally,
the third row describes the average time when the access requests tested in the second row
are repeated, the kid Suzanne requests to turn on the TV, and the teenager John requests
to open the oven while one of the parents is in the kitchen. The majority of the requests
were approved except for those when Alex attempted to turn on the oven, which is not
allowed according to our configuration, and when Suzanne tried to turn on the television,
which is not permitted according to our configuration since testing was performed on a
Monday morning.
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Table 4. Multiple concurrent instances of one user sending request to one device.

Number of Users Number of Devices Lambda Processing Time in ms Total Number of Requests

1 1 1.4671 10

3 3 1.6925 30 (10 per request)

5 5 2.0460 50 (10 per request)

Table 5 displays the average execution time of the lambda function when multiple
users simultaneously send requests to one device. The first, second, and third rows show
the average time when one user (the parent Bob), three users (the parent and the two kids),
and five users (the parent, the two kids, and the two teenagers) respectively all request to
lock the front door lock at the same time. All the requests were denied except for when the
parent Bob requested to lock the front door lock.

Table 5. Multiple users sending requests to one device.

Number of Users Number of Devices Lambda Processing Time in ms Total Number of Requests

1 1 1.4671 10

3 1 1.47577 30 (10 per request)

5 1 1.55134 50 (10 per request)

4. H ABACα vs. EGRBAC in Terms of Theoretical Expressiveness Power

Our goal in this section is to determine if any EGRBAC configuration can be expressed
fully in the HABACα model, and vice versa, and if not, which model is more expressive
and in which terms. The approach used in this section is an extension of the previously
published approach in [56].

4.1. From EGRBAC to HABACα

Here, we introduce the HABACα configuration that translates EGRBAC configuration
to be implemented by HABACα model.

In this configuration, for differentiation purposes, every EGRBAC component is
followed with the suffix EGRBAC. Similarly, every HABACα component is followed with
the suffix HABACα

. The configuration of HABACα for a given EGRBAC configuration is
shown in Table 6.

Essentially, the objective is to be able to translate any EGRBAC configuration towards its
equivalent HABACα configuration, so that the authorizations in the HABACα match those
under EGRBAC. The inputs are EGRBAC component sets REGRBAC, UEGRBAC, UAEGRBAC,
ECEGRBAC, EREGRBAC, EAEGRBAC, DREGRBAC, PDRAEGRBAC, PEGRBAC, DEGRBAC,
OPEGRBAC, RPDRAEGRBAC, DSDConstraintsEGRBAC, and SSDConstraintsEGRBAC. The
outputs are UHABACα

, USAHABACα
, ESHABACα

, ESAHABACα
, OPHABACα

, OPAHABACα
,

DHABACα
, DAHABACα

, UAConstraintHABACα
, SAConstraintHABACα

, and the authorization
function AuthorizationHABACα

(s : SHABACα
, op : OPHABACα

, d : DHABACα
, es : ESHABACα

).
Both systems have the same users, devices, and operations. In HABACα, roles are

expressed using the user/session attribute Relationship. This attribute takes as an input a
user or session and returns a set of roles that have been assigned to that user or session.

Constraints related to the static separation of duties SSDConstraints are mapped into
constraints related to user attributes in HABACα. Similarly, constraints related to the
dynamic separation of duties are mapped into session attribute constraints in HABACα.

Environment roles are mapped into atomic environment-state attributes that have
a range of possible values equal to {True, False}. True indicates that the environment
state is currently satisfied or the equivalent environment role in EGRBAC should be
active. False indicates that the environment state is currently not satisfied or the equivalent
environment role in EGRBAC should be inactive. It is outside the scope of this model to
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explain how to trigger different attributes of the environment state in response to changes
in the environment.

In EGRBAC, device roles are ways of categorizing permissions. In HABACα, we do
not have permissions. Hence, we translate device roles in EGRBAC into atomic operation
attributes and atomic device attributes with a range of values equal to {True, False}. If a
permission px = (opx, dx), where px ∈ PEGRBAC is assigned to the device role dry, where
dry ∈ DREGRBAC, then day(dx) = True and opay(opx) = True, where opay ∈ OPAHABACα

,
day ∈ DAHABACα

, and opay and day are the operation and device attributes which were
created to be equivalent to the device role dry ∈ DREGRBAC.

In the final step, we construct the authorization policies. In EGRBAC, the RPDRA
provides specific role pairs and consequently users with access to specific device roles and
therefore permissions. Therefore, an authorization function is created for each
rpdrai = ((ri, ERi), dri) ∈ RPDRA. Each authorization function is then a disjunct in
the final authorization function.

At the end of the translation process, there is a single user/session attribute, which
is Relationship. The number of user attribute constraints is equal to the number of
SSDConstraints. The number of subject attribute constraints is equal to the number of
DSDConstraints. The number of operation attributes and the number of device attributes
equals the number of device roles. The number of environment-state attributes is equal to
the number of environment roles.

Table 6. EGRBAC configuration in HABACα.

- UHABACα
= UEGRBAC

- USAHABACα
= {Relationship}

- Range(Relationship) = REGRBAC
- Relationship : u ∈ UHABACα

→ 2REGRBAC

- Relationship : s ∈ SHABACα
→ 2REGRBAC

- (∀ui ∈ UHABACα
)[Relationship(ui) = {rx|(ui, rx) ∈ UAEGRBAC}]

- UAConstraintHABACα
= {uaci}, where:

- ∀(ssdci = (ri, Rj) ∈ SSDConstraintsEGRBAC)[uaci = ((Relationship, ri), UAPj)], where:
UAPj = {(Relationship, rn)|rn ∈ Rj}

- SAConstraintHABACα
= {saci}, where:

- ∀(dsdci = (ri, Rj) ∈ DSDConstraintsEGRBAC)[saci = ((Relationship, ri), UAPj)], where:
UAPj = {(Relationship, rn)|rn ∈ Rj}

- ESHABACα
= {Current}

- ESAHABACα
= EREGRBAC

- (∀esai ∈ ESAHABACα
)[esai : es ∈ ESHABACα

→ {True, False}]
- DHABACα

= DEGRBAC, OPHABACα
= OPEGRBAC

- DAHABACα
= OPAHABACα

= DREGRBAC
- (∀dai ∈ DAHABACα

) [dai : d ∈ DHABACα
→ {True, False}]

- (∀opai ∈ OPAHABACα
)[opai : op ∈ OPHABACα

→ {True, False}]
- (∀(dry ∈ DREGRBAC, px ∈ {pi|(pi, dry) ∈ PDRAEGRBAC}))[dry(px.op) = True, dry(px.d) =

True]
- Initialize the authorization function Authorization(s : SHABACα

, op : OPHABACα
, d :

DHABACα
, current : ESHABACα

)
- For each rpdrai = ((ri, ERi), dri) ∈ RPDRAHABACα

, we construct an authorization function as
follows:

1. SetO f ESA = “TRUE”.
2. ∀(esa ∈ ERi)[SetO f ESA = SetO f ESA + “∧ ” + “esa(current) = True”].
3. CurrentAuth = “ri” + “ ∈ ” + “Relationship(s)” + “ ∧ ” + “dri(op) = True” + “ ∧ ” +

“dri(d) = True” + “∧ ” + “SetO f ESA”.
4. Authorization(s : SHABACα

, op : OPHABACα
, d : DHABACα

, current : ESHABACα
) ←

Authorization(s : SHABACα
, op : OPHABACα

, d : DHABACα
, current : ESHABACα

) + “ ∨ ”
+ “CurrentAuth”.
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EGRBAC grants access to a specific set of permissions through a series of assignments,
as explained in Section 2.1. RPDRA is the most important assignment, which assigns device
roles to role pairs. To put it another way, controlling RPDRA allows us to decide which role
pairs and, therefore, roles are authorized to access specific device roles and, subsequently,
permissions. In HABACα, however, no such point of vulnerability or “attack point" can
be controlled to prevent specific access. Therefore, we are unable to create something
equivalent to EGRBAC PRConstraints in HABACα. Only by checking individual requests
to access permissions and searching for prohibited users will it be possible to ensure that
particular prohibited users will not be granted access to particular permissions. EGRBAC
offers the advantage of the ability to enforce such constraints at the time of assignment,
whereas HABACα-like models would need to enforce them at the time of enforcement.

To summarize, the construction of HABACα shown in Table 6 is equivalent to the
given EGRBAC configuration, including static and dynamic separation of duty constraints.
Since the construction is straightforward and one-for-one, the claim of equivalence is
intuitively logical. Ref. [65] can be used for a formal argument.

4.2. From HABACα to EGRBAC

Throughout this section, we will describe our methodology for generating EGRBAC
components and configurations from HABACα configuration. This methodology is inspired
by the approach proposed in [56], which follows a bottom-up role engineering approach. It
applies for HABACα policies containing environment attributes and static user/session,
operation, and device attribute functions. However, it is incapable of handling policies that
compare two different types of attributes. As a result of certain limitations in EGRBAC, it is
either impossible to capture policies involving dynamic user/session, operation, and device
attribute functions or extremely expensive (resulting in a role explosion).

In the following sections, we describe our approach and demonstrate it step by
step. Our demonstration starts from Use Case B introduced in Figure 5 and applies our
methodology to construct its equivalent EGRBAC configuration.

4.2.1. From Authorization Function to Authorization Array

Here, as a preliminary step, we first transform the authorization function into a
disjunctive normal form (DNF). In Figure 8, we display the authorization function of Use
Case B, which is presented in Figure 5 after transforming it into a DNF format by following
the standard approach.

We call each conjuncted term a condition. We have the session, environment, device,
operation, and mix conditions, which receptively involve user/session, environment,
device, operation, and more than one type of attribute. In Figure 8 we have six conjunctive
clauses. There is one conjunctive clause per access authorization rule.

Authorization(s : S, op : OP, d : D, es : ES) ≡
(Relationship(s) = kid∧ day(current) ∈ {Sa, S} ∧ 12:00 ≤ time(current) ≤ 19:00 ∧
KidsFriendly(op) = True) ∨
(Relationship(s) = kid∧ day(current) ∈ {M, T, W, Th, F} ∧ 17:00 ≤ time(current) ≤ 19:00 ∧
KidsFriendly(op) = True) ∨
(Relationship(s) = teenager ∧ ParentInTheHouse(current) = True∧ DangerouseDevices(d) =
True) ∨
(Relationship(s) = teenager∧ KidsFriendly(op) = False) ∨
(Relationship(s) = teenager∧ KidsFriendly(op) = True) ∨
(Relationship(s) = parent)

Figure 8. The authorization function of Use Case B in DNF format.

To build the authorization array we examine every ui ∈ U, dj ∈ D, and opk ∈ OP
combination against each conjunctive clause, whenever a combination satisfies every term
(condition) in a conjunctive clause except those conditions that involve environment-state
attributes, where we create a row (ui, dj, opk, current, C) for that combination in the
authorization array. C denotes the set of session and environment-related conditions in
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the evaluated conjunctive clause. When evaluating a combination ui, dj, opk against a
conjunctive clause, unsatisfying a device condition means that either the condition is not
true for the evaluated device dj, or the condition references an undefined attribute value
for the evaluated device dj. Similarly, unsatisfying an operation condition means either
the condition is not true for the evaluated operation opk, or the condition references an
undefined attribute value for the evaluated operation opk. Finally, unsatisfying a user
condition means that the condition is not true for the evaluated user ui.

Authorizations array (AA): an authorization of row (ui, dj, opk, esl, C) denotes that the
user ui is allowed to perform an operation opk on a device dj during the environment state esl
whenever the set of environment and session conditions in C are satisfied. Table 7 provides
the AA for Use Case B. Different colors represent authorization fields for different users.

Table 7. AA for Use Case B (Different colors represent authorization fields for different users).

User u Device d Operation op Environment State es Conditions C

Suzanne iPad A5 current X

Suzanne iPad A8 current X

Suzanne iPad A5 current Z

Suzanne iPad A8 current Z

Bob iPad A5 current {Relationship(s) = parent}
Bob iPad A8 current {Relationship(s) = parent}
Bob iPad A11 current {Relationship(s) = parent}
Bob iPad Games current {Relationship(s) = parent}
Bob iPad Movies current {Relationship(s) = parent}
Bob lawnMower ON current {Relationship(s) = parent}
Bob lawnMower OFF current {Relationship(s) = parent}
Bob FrontDoor Lock current {Relationship(s) = parent}
Bob FrontDoor Unlock current {Relationship(s) = parent}
John iPad A5 current {Relationship(s) = teenager}
John iPad A8 current {Relationship(s) = teenager}
John iPad A11 current {Relationship(s) = teenager}
John iPad Games current {Relationship(s) = teenager}
John iPad Movies current {Relationship(s) = teenager}
John FrontDoor Lock current Y

John FrontDoor Unlock current Y
X = {Relationship(s) = kid, day(current) ∈ {Sa, S}, 12:00 ≤ time(current) ≤ 19:00}; Y =
{Relationship(s) = teenager, ParentInTheHouse(current) = True}; Z= {Relationship(s) = kid,
day(current) ∈ {M, T, W, Th, F}, 17:00 ≤ time(current) ≤ 19:00}.

4.2.2. Approach

The goal is to construct EGRBAC elements, assignments, and derived relationships
from HABACα policies so that the authorizations are the same as those under HABACα.
In this construction, for differentiation purposes, every EGRBAC component is followed
with the suffix EGRBAC. Similarly, every HABACα component is followed with the suffix
HABACα

.
The inputs are HABACα components UHABACα

, DHABACα
, OPHABACα

, USAHABACα
,

ESAHABACα
, OPAHABACα

, DAHABACα
, and the authorization array AA. The outputs are

EGRBAC components UEGRBAC, REGRBAC, UAEGRBAC, ECEGRBAC, EREGRBAC, EAEGRBAC,
RPEGRBAC, RPRAEGRBAC, RPEAEGRBAC, DEGRBAC, OPEGRBAC, PEGRBAC, DREGRBAC,
PDRAEGRBAC, and RPDRAEGRBAC. The steps are following:

Step 1: Initialization. Both systems have the same set of users, devices, and operations,
hence UEGRBAC = UHABACα

, DHABACα
= DHABACα

, and OPEGRBAC = OPHABACα
. For

every operation opi, and device dj pair, where opi is assigned to dj by the device
manufacturers, create a permission.
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Step 2: Create the set of device roles DREGRBAC. (a) Create a device role dr for each
operation attribute instance or device attribute instance. DR here are represented as a
condition of the form opa = x, or da = x. Where x is an instance of the attribute value.
(b) Create one device role called remaining permissions RemPerm for all the permissions
pl = (di, opj), where di is not assigned to any device attributes, and opj is not assigned to
any operation attribute. This device role captures the cases where some users have access
to specific permissions directly without involving the device’s or operation’s attributes.

Step 3: Build the permission device role assignment array PDRA. It is a many-to-many
mapping of PEGRBAC set and DREGRBAC set (constructed in Step 2). To construct PDRA
we first make a column for each dr ∈ DREGRBAC, and make a row for each permission
p ∈ PEGRBAC. Then, we fill the array PDRA, where PDRA[i, j] = 1 in two cases, first
if for the permission pi (corresponding to the row i) pi.op or pi.d satisfies the condition
corresponding to the device role of the column j drj. Second, if pi.op is not assigned to
any operation attribute, and pi.d is not assigned to any device attribute, and the device
role corresponding to this column is RemPerm. PDRA[i, j] = 0 otherwise. For every
PDRA[i, j] = 1, add the pair (pi, drj) to the set PDRA of EGRBAC. See Table 8 for the
PDRA array of Use Case B.

Step 4: Build the user device role authorization array UDRAA from the authorization
array AA, and PDRA. UDRAA ⊆ UEGRBAC × DREGRBAC, a many-to-many mapping
between UEGRBAC and DREGRBAC. To construct UDRAA, we first make a row for each
user, and a column for each device role. Then, for every UDRAA[i, j] ∈ UDRAA we
check the AA for every ui, and px combination, where (px, drj) ∈ PDRA. ui is the user
corresponding to the row i, while drj is the device role corresponding to the column j in
UDRAA. Here, we have three cases: (a) UDRAA[i, j] = 1 if user ui can access all the
permissions assigned to the device role drj without any condition. (b) UDRAA[i, j] = Y,
where Y is a set of conditions sets. Each conditions set is a set of session, and environment
conditions that need to be satisfied together for a ui to access all the permissions assigned to
drj. Please note that these sets of conditions must be the same for each permission assigned
to drj. (c) Finally, UDRAA[i, j] = 0 if user ui is not allowed to access all the permissions
assigned to the device role drj, or is allowed to access different permissions in drj but under
different set of conditions. Table 9 shows UDRAA for Use Case B.

Step 5: Follow the EGRBAC users and environment roles constructing algorithm
presented in Section 4.2.3 to construct the rest of the EGRBAC components (REGRBAC,
ECEGRBAC, EREGRBAC, RPEGRBAC), assignments (UAEGRBAC, EAEGRBAC, RPDRAEGRBAC),
and derived relations (RPRAEGRBAC, RPEAEGRBAC). The set of user roles REGRBAC
constructed here is the set of candidate user roles.

Step 6: Combine similar user roles. To achieve this, we run the role combining
algorithm described in Section 4.2.4.

Table 8. PDRA array for Use Case B.

DangerouseDevices = True DangerouseDevices = False KidsFriendly = True KidsFriendly = False RemPerm

(iPad, A5) 0 0 1 0 0

(iPad, A8) 0 0 1 0 0

(iPad, A11) 0 0 0 1 0

(iPad, Games) 0 0 0 1 0

(iPad, Movies) 0 0 0 1 0

(lawnMower, ON) 0 0 0 0 1

(lawnMower, OFF) 0 0 0 0 1

(FrontDoor, Lock) 1 0 0 0 0

(FrontDoor, Unlock) 1 0 0 0 0
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Table 9. UDRAA for Use Case B.

DangerouseDevices = True DangerouseDevices = False KidsFriendly = True KidsFriendly = False RemPerm

Suzanne 0 0 {X, Z} 0 0

Bob {{Relationship(s) = parent}} 0 {{Relationship(s) = parent}} {{Relationship(s) = parent}} {{Relationship(s) = parent}}
John {Y} 0 {{Relationship(s) = teenager}} {{Relationship(s) = teenager}} 0

X = {Relationship(s) = kid, day(current) ∈ {Sa, S}, 12:00 ≤ time(current) ≤ 19:00}; Y =
{Relationship(s) = teenager, ParentInTheHouse(current) = True}; Z= {Relationship(s) = kid, day(current) ∈
{M, T, W, Th, F}, 17:00 ≤ time(current) ≤ 19:00}.

4.2.3. EGRBAC Users and Environment Roles Constructing Algorithm

The goal is to construct EGRBAC elements (REGRBAC, ECEGRBAC, EREGRBAC, RPEGRBAC),
assignments (UAEGRBAC, EAEGRBAC, RPDRAEGRBAC), and derived relations (RPRAEGRBAC,
RPEAEGRBAC) from UDRAA. See Algorithm 1 for the full algorithm. The input is UDRAA.
The outputs are REGRBAC, UAEGRBAC, ECEGRBAC, EREGRBAC, EAEGRBAC, RPEGRBAC, and
RPDRAEGRBAC. The steps are shown as follows:

Step 1: Initialize the following EGRBAC sets REGRBAC = {}, UAEGRBAC = {}, ECEGRBAC
= {}, EREGRBAC = {}, EAEGRBAC = {}, RPEGRBAC = {}, RPDRAEGRBAC = {}, and the
following constants m = Number of device roles, n = Number of users.

Step 2: Loop through the columns of UDRAA, Table 9 for Use Case B. Each column
corresponds to user access rights to a specific device role. Inside each column, loop through
the fields of different rows. Here we have two cases:

A. UDRAA[i, j] = 1, according to the way UDRAA was constructed, this means the
user corresponding to this row ui can access the device role of this column drj unconditionally.
In this case, the algorithm does the following:

1. Create an environment role erx = Any_Time and add it to the set EREGRBAC. Create
an environment condition ecx = True and add it to the set ECEGRBAC. Add ({ecx}, erx)
to the set EA, this implies that the environment role Any_Time will always be active.
Create a set of environment roles SER and add erx to it SER = {erx}.

2. Create a role rm = ToString(ColumnDR(j)) which corresponds to accessing this
column device role anytime and unconditionally. Add this role to the set REGRBAC.

3. Define a role pair rpz, where rpz.r = rm and rpz.ER = SER. Add rpz to the set RPEGRBAC.
4. Assign the role pair rpz to the device role corresponding to this column by adding the

pair (rpz, ColumnDR(j)) to the set RPDRAEGRBAC.
5. Assign the role rm to the user corresponding to this row by adding the pair(RawUser(i), rm)

to the set UAEGRBAC.

B. UDRAA[i, j] 6= 1 ∧ UDRAA[i, j] 6= 0, which means that the user ui can access
the device role drj under specific a set of user and environment conditions defined by
UDRAA[i, j]. Here, UDRAA[i, j] is a set of sets of conditions, where each set of conditions
defines a group of session, and environment conditions that need to be satisfied together
for the user ui to be able to access the device role drj. Loop through each set of conditions
X ∈ UDRAA[i, j]; for each X perform the following steps:

1. Loop through each condition y ∈ X. If y is an environment-state attribute condition,
the algorithm creates a corresponding environment condition ecy and adds it to the set
ECEGRBAC, environment role ery and adds it to the set EREGRBAC. Adds ({ecx}, erx)
to the set EAEGRBAC. Moreover, the algorithm adds ery to the set of environment
roles SER.

2. After looping through each condition in X, if the set SER is empty, this means this
set of conditions does not contain an environment-state condition. In other words,
the user of this row can access the device role of this column without any environment
condition. In this case the algorithm creates an environment role erx = Any_Time and
add it to the set EREGRBAC, an environment condition ecx = True and add it to the set
ECEGRBAC. Add ({ecx}, erx) to the set EAEGRBAC, this implies that the environment
role Any_Time will always be active. Add erx to it SER = {erx}.
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3. The algorithm creates a corresponding user role rm = ToString(ColumnDR(j)) +”∧
”+ ToString(X) which represents accessing this column device role when the set of
conditions that form X is satisfied. Add this role to the set REGRBAC.

4. Define a role pair rpz, where rpz.r = rm and rpz.ER = SER. Add rpz to the
set RPEGRBAC.

5. Assign the role pair rpz to the device role corresponding to this column by adding the
pair (rpz, ColumnDR(j)) to the set RPDRAEGRBAC.

6. Finally, assign the role rm to the user corresponding to this row by adding the
pair(RawUser(i), rm) to the set UAEGRBAC.

Algorithm 1 EGRBAC Users and Environment Roles Construction
Require: UDRAA
Require: ColumnDR(j): return the device role corresponding to the column j in UDRAA.
Require: RawUser(i): return the user corresponding to the row i in UDRAA.
Require: IsESC(c): Return True if c is an environment-state condition.
Require: ToString(x) : Convert x into a string format.

1: Initilize n = Number of users, m = Number of device roles, REGRBAC = {}, UAEGRBAC = {},
ECEGRBAC = {}, EREGRBAC = {}, EAEGRBAC = {}, RPEGRBAC = {}, and RPDRAEGRBAC =
{},

2: for j← 1 to m do
3: for i← 1 to n do
4: if UDRAA[i, j] = 1 then
5: erx = Any_Time, ecx = True
6: ECEGRBAC = ECEGRBAC ∪ {ecx}, EREGRBAC = EREGRBAC ∪ {erx}
7: EAEGRBAC = EAEGRBAC ∪ {({ecx}, erx)}
8: SER = {erx}
9: rm = ToString(ColumnDR(j))

10: REGRBAC = REGRBAC ∪ {rm}
11: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
12: RPDRAEGRBAC = RPDRAEGRBAC ∪ {(rpz, ColumnDR(j))}
13: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
14:
15: else if UDRAA[i, j] 6= 1∧UDRAA[i, j] 6= 0 then
16: for each X ∈ UDRAA[i, j] do
17: SER = {}
18: for each y ∈ {y|(y ∈ X) ∧ IsESC(y)} do
19: Create ecy, and ery
20: ECEGRBAC = ECEGRBAC ∪ {ecy}, EREGRBAC = EREGRBAC ∪ {ery}
21: EAEGRBAC = EAEGRBAC ∪ {({ecy}, ery)}
22: SER = SER ∪ {ery}
23: end for
24: if SER == {} then
25: erx = Any_Time, ecx = True
26: ECRC = ECRC ∪ {ecx}, ERRC = ERRC ∪ {erx}
27: EARC = EARC ∪ {({ecx}, erx)}
28: SER = {erx}
29: end if
30: rm = ToString(ColumnDR(j)) +“∧ ”+ ToString(X)
31: REGRBAC = REGRBAC ∪ {rm}
32: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
33: RPDRAEGRBAC = RPDRAEGRBAC ∪ (rpz, ColumnDR(j))
34: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
35: end for
36: end if
37: end for
38: end for
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4.2.4. Users Roles Combining Algorithm

This algorithm is designed to combine roles with similar user assignments. When two
roles ri, rj are assigned to the same set of users, the algorithm performs the following:

1. For every role pair rpk, in which the role part of it rpk.r is equal to ri, change the role
part of it to rj (rpk.r = rj).

2. Remove ri from the set of roles REGRBAC.
3. For every (ul , ri) ∈ UAEGRBAC, remove the pair (ul , ri) from the set UAEGRBAC.
4. For every ((ri, ERx), dry) ∈ RPDRAEGRBAC, remove (ri, ERx), dry) from the set

RPDRAEGRBAC, and instead add the pair ((rj, ERx), dry) to the set RPDRAEGRBAC.
For the detailed algorithm, please refer to Algorithm 2.

Upon implementing the first five steps outlined in Section 4.2.2, we will end up with a
set of nine roles, as shown in Figure 9. Different roles will be assigned to different users
as follows:

UA = {(suzanne, r3), (suzanne, r4), (bob, r1), (bob, r5), (bob, r7), (bob, r9), (john, r2), (john, r6), (john, r8))}.

As a result of the user role-combining algorithm, the constructed nine roles will be
merged into three roles. Moreover, the user role assignment set will be composed of three
pairs, as follows:

R = {ra ≡ r1, r5, r7, r9, rb ≡ r2, r6, r8, rc ≡ r3, r4}.

UA = {(bob, ra), (john, rb), (suzanne, rc), }.

Algorithm 2 Users Roles Combining Algorithm

Require: REGRBAC: The set of roles
Require: U(r): Returns the set of users assigned to the role r.
Require: RP(r): Returns the set of role pairs associated with the role r.

1: for each ri, rj ∈ REGRBAC do
2: if U(ri) = U(rj) then
3: for each rpk ∈ RP(ri) do
4: rpk.r = rj
5: end for
6:
7: REGRBAC = REGRBAC \ ri
8:
9: . Delete all UA pairs related to ri

10: for each (ul , ri) ∈ UAEGRBAC do
11: UA = UA \ (ul , ri)
12: end for
13:
14: . Replace all RPDRA pairs related to ri
15: for each ((ri, ERx), dry) ∈ RPDRAEGRBAC do
16: RPDRAEGRBAC = RPDRAEGRBAC \ ((ri, ERx), dry)
17: RPDRAEGRBAC = RPDRAEGRBAC∪
18: {((rj, ERx), dry)}
19: end for
20: end if
21: end for
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r1 ≡ DangerouseDevices = True ∧ Relationship(s) = parent,
r2 ≡ DangerouseDevices = True ∧ {Relationship(s) = teenager,

ParentInTheHouse(current) = True},
r3 ≡ KidsFriendly = True ∧ {Relationship(s) = kid,

day(current) ∈ {Sa, S}, 12:00 ≤ time(current) ≤ 19:00},
r4 ≡ KidsFriendly = True ∧ {Relationship(s) = kid,

day(current) ∈ {M, T, W, Th, F}, 17:00 ≤ time(current) ≤ 19:00},
r5 ≡ KidsFriendly = True ∧ Relationship(s) = parent,
r6 ≡ KidsFriendly = True ∧ Relationship(s) = teenager,
r7 ≡ KidsFriendly = False ∧ Relationship(s) = parent,
r8 ≡ KidsFriendly = False ∧ Relationship(s) = teenager,
r9 ≡ RemPerm ∧ Relationship(s) = parent

Figure 9. Initial Set of Roles Before Running the Role Merging Algorithm.

4.2.5. The output of EGRBAC Constructing Approach on Use Case B

The output of EGRBAC role constructing algorithm for Use Case B is shown in Table 10.
The maximum number of created device roles is O(|OPA|+ |DA|). Since we create

an environment role and an environment condition for each logical environment condition,
the maximum number of environment roles and conditions is Ω(|ESA|). Finally, the
maximum number of user roles is O(2|SA|+|ESA|).

Table 10. The output of EGRBAC constructing approach on Use Case B.

(a) UEGRBAC = UHABACα
, DEGRBAC = DHABACα

, OPEGRBAC = OPHABACα
, PEGRBAC =

{(iPad, A5), (iPad, A8), (iPad, A11), (iPad, Games), (iPad, Movies), (FrontDoor, Lock),
(FrontDoor, Unlock), (lawnMower, ON), (lawnMower, OFF)}
(b) DR = {DangerouseDevices = True,

DangerouseDevices = False,

KidsFriendly = True, KidsFriendly = False,

RemPerm}.
(c) PDRA = {((iPad, A5), KidsFriendly = True),

(iPad, A8), KidsFriendly = True),

((iPad, A11), KidsFriendly = False),

((iPad, Games), KidsFriendly = False),

((iPad, Movies), KidsFriendly = False),

((FrontDoor, Lock), DangerouseDevices = True),

((FrontDoor, Unlock), DangerouseDevices = True),

((lawnMower, ON), RemPerm),

((lawnMower, OFF), RemPerm)}.
(d) EC = {True,

ec1 ≡ ParentInTheHouse(current) = True,

ec2 ≡ day(current) ∈ {Sa, S},
ec3 ≡ 12:00 ≤ time(current) ≤ 19:00 ,

ec4 ≡ day(current) ∈ {M, T, W, Th, F} ,

ec5 ≡ 17:00 ≤ time(current) ≤ 19:00}.
(e) ER = {Any_Time,

er1 ≡ ParentInTheHouse(current) = True,

er2 ≡ day(current) ∈ {Sa, S} ≡Weekend,

er3 ≡ 12:00 ≤ time(current) ≤ 19:00 ≡ A f ternoon and Evening,

er4 ≡ day(current) ∈ {M, T, W, Th, F} ≡Weekdays,

er5 ≡ 17:00 ≤ time(current) ≤ 19:00 ≡ Evening}.
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Table 10. Cont.

(f) EA = {({True}, Any_Time), ({ec1}, er1) ,
({ec2}, er2), ({ec3}, er3), ({ec4}, er4), ({ec5}, er5) }.
(g) R = {ra, rb, rc}.
(h) UA = {(bob, ra), (john, rb), (suzanne, rc)}.
(i) RP = {(ra, Any_Time),
(rb, Any_Time),
(rb, {er1}),
(rc, {er2, er3}),
(rc, {er4, er5})}.
(j) RPDRA = {((ra, AnyT ime), DangerouseDevices = True),
((ra, {Any_Time}), KidsFriendly = True),
((ra, {Any_Time}), KidsFriendly = False),
((ra, {Any_Time}), RemPerm),
((rb, {er1}), DangerouseDevices = True),
((rb, {Any_Time}), KidsFriendly = True),
((rb, {Any_Time}), KidsFriendly = False),
((rc, {er2, er3}), KidsFriendly = True),
((rc, {er4, er5}), KidsFriendly = True)}.

5. Comprehensive Theoretical Comparison

In this section, we compare and analyze HABACα and EGRBAC against access control
criteria adapted from [9]. These criteria are classified into two types: (a) Basic and main
criteria. (b) Quality criteria.

5.1. Basic and Main Criteria

Six elements are included in this type of criteria. Each element will be discussed below.
Table 11 summarizes this type of criteria comparison.

Table 11. Evaluating HABACα and EGRBAC against basic and main criteria.

Criteria EGRBAC H ABAC

1. Constraints

a. Static separation of duty Yes Yes

b. Dynamic separation of duty Yes Yes

c. P-R constraints Yes No

2. Attributed-based specifications

a. Static Yes Yes

b. Dynamic No Yes

3. Least privilege principle Yes Yes

4. Authentication Positive (Close) Positive (Close)

5. Access administration

a. User provisioning Easy Complicated

b. Policy provisioning Complicated Easy

6. Access review Easy Complicated

7. Administrative policies Centralized Centralized

5.1.1. Constraints

These are invariants that must be maintained. EGRBAC supports three constraints:
static separation of duty, dynamic separation of duty, and permission–role constraints.
HABACα, however, cannot support permission–role constraints, as we will discuss in
Section 6.
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5.1.2. Attributed-Based Specifications

As explained in Section 3.1, we have two types of attributes, static and dynamic. Both
models can support environment attributes. Furthermore, they both support static users,
devices, and operations attributes. Dynamic users, devices, and operations attributes,
however, are not supported by EGRBAC.

5.1.3. Least Privilege Principle

Under this principle, a subject of a system should only be permitted to have access
to the least privileges required for performing the user duties. Both models adhere to
this principle. They both include the component session, and a user belonging to several
roles (in EGRBAC), or has different attributes corresponding to his roles in the house (in
HABACα) can invoke any subset of them that enables tasks to be accomplished in a session.
Accordingly, a powerful user can keep some roles or attributes deactivated and activate
them when necessary.

5.1.4. Authentication

Both models support positive (closed) authentication. They allow access only when
there is an affirmative authorization for it and deny it in other circumstances.

5.1.5. Access Administration

Our comparison here is based on two administrative tasks, user provisioning and policy
provisioning. Provisioning users is easier in RBAC-based models (including EGRBAC) than
in ABAC-based models (including HABACα). In RBAC models, user provisioning requires
the administrator (the homeowner) to assign roles. Alternatively, in ABAC-based models,
the administrator must configure different attribute values for newly provisioned users
and devices. On the contrary, in ABAC-based model, policy provisioning only requires the
addition of those policies to the authorization function. By contrast, in the RBAC-based
model, this requires configuring a series of assignments as in EGRBAC.

5.1.6. Access Review

In RBAC-based models (such as EGRBAC), to calculate the maximum permission
available for a user, it is sufficient to look into his roles, while this could be more complicated
in ABAC-based models (such as HABACα) [66].

5.1.7. Administrative Policies

To determine how administrative privileges are organized in any model, an access
control administration model is required. In both models, it is assumed that the homeowner
is responsible for granting or revoking permissions. Accordingly, we can conclude that
they both support centralized administrative policies.

5.2. Quality Criteria

Here we have three essential criteria, as explained in the following.

5.2.1. Expressiveness and Meaningfulness

We believe that for an AC model to be expressive, it must maintain at least the
following three characteristics. First, it must be formally defined to have a precise and
rigorous specification of the intended behavior. Second, it must be sufficiently meaningful
and expressive to support different types of constraints. Finally, The model should capture
different types of static and dynamic attributes. Both models are formally defined. Moreover,
they both maintain different constraints except for the permission–role constraints, which are
not supported by HABACα. Finally, as explained in the Attributed-based specifications
criterion in Section 5.1, they both capture environment attributes and different types of static
attributes. EGRBAC, however, does not capture the user’s and device’s dynamic attributes.
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5.2.2. Flexibility

Several factors need to be evaluated to determine whether an AC model is flexible.
Here, we identify three of them. First, the model must be flexible enough to meet the
requirements of smart-home IoT. Furthermore, the model should support delegation,
which is the ability for a subject to delegate some or all his privileges to another user.
Additionally, the model should provide flexibility for adding new users or policies.

According to the criteria proposed in [8] for an access control model to fulfill smart-
home IoT requirements, it should be dynamic, fine-grained, and suitable for constrained
smart-home devices. Moreover, The model should be constructed specifically for smart-
home IoT or interpreted for the smart-home domain, using appropriate use cases. The model
should be demonstrated in a proof-of-concept to be credible using commercially available
technology. Finally, the model should have a formal definition so that the intended behavior
is precise and rigorous. As discussed in [8], EGRBAC meets these criteria. However, as we
discussed earlier, EGRBAC is not dynamic enough to capture dynamic attributes. On
the other hand, the HABACα is dynamic, fine-grained, suitable for the constrained home
environment, designed specifically for smart-home IoT, illustrated with two use-case
demonstrations, has proof-of-concept implementation, and is formally defined. Hence, it
meets the criteria proposed in [8].

As for delegation support, it is not feasible to determine this without an administration
model for access control. In general, though, it has been demonstrated that RBAC-based
and ABAC-based models are capable of delegation.

Both models are capable of provisioning new users and policies. Although new users
are more easily provisioned in RBAC-based models (including EGRBAC) than in ABAC-
based models (including HABACα), it is more challenging to provision new policies in
RBAC-based models than in ABAC-based models.

5.2.3. Efficiency Level and Scalability

The access control model should address two main factors regarding efficiency and
scalability. The model’s validity in the real world will be questionable if it cannot be expanded
easily. In addition, the development of the model should not adversely affect its efficiency.
To analyze these factors accurately, a more detailed study needs to be performed. Generally,
however, smart-home IoT involves a relatively small number of users and devices. Furthermore,
organizations of different sizes have widely adopted ABAC-based models and RBAC-based
models, proving their scalability.

6. Discussion

In this paper, we present HABACα. An attribute-based access control model for smart-
home IoT that governs user-to-device authorization. User authentication is outside the
scope of this model. The model captures the characteristics of different users, environments,
operations, and devices. Furthermore, HABACα can give user access to some operations
within a single device without giving them access to the entire device. Therefore, it is a
fine-grained model.

We illustrated our model with two use-case scenarios and demonstrated its applicability
with a proof-of-concept implementation on the Amazon Web Services (AWS) platform. Overall,
our model is functional and can be easily applied. We can notice that the captured average
lambda processing times are generally low. We understand that practical smart homes
will have different and more complicated scenarios. A detailed performance evaluation is
ultimately required by simulating a large set of smart things; however, our proof-of-concept
implementation in AWS is meant to demonstrate the practical applicability and effectiveness
of fine-grained security policies in the context of smart homes. Incorporating many scenarios
from the real world will not result in a change in security policy evaluation. Nevertheless,
we are considering the possibility of a more detailed performance analysis as an extension of
this study. The expressiveness of the model is discussed in Section 5.1. However, to deploy
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this model for commercial use, a more general sophisticated expressiveness study should
be conducted.

Furthermore, we carefully investigated HABACα against EGRBAC. Both models are
specifically designed to meet smart-home challenges. Towards this goal, we first compared
the theoretical expressiveness power of these models in Section 5.2. Then, we evaluated
both models against access control models criteria adapted from [9].

In comparing the theoretical expressiveness power of HABACα and EGRBAC, we
introduced approaches for translating EGRBAC configuration into an equivalent HABACα

setting so that the authorization rights are the same in both systems and vice versa. These
approaches are adapted from [56]. Nevertheless, as discussed in Section 4.1, in HABACα,
it is not possible to create something similar to EGRBAC PRConstraints. Therefore, it is
difficult to prevent future authorization of specific users to access particular devices or
operations as this can only be done dynamically when the user is attempting to access
the prohibited operation, as opposed to in EGRBAC, which permits this prevention to be
implemented upon assignment. It can be challenging to determine the role structure in
EGRBAC, but once it has been determined, it is straightforward to determine which users
have what permissions and which users do not have future access to such privileges.

The EGRBAC construction approach is capable of handling HABACα policies
containing environment attributes in addition to users/sessions, devices, and operations
static attributes. However, due to certain limitations in EGRBAC, our approach cannot
handle HABACα policies that deal with users, sessions, or devices with dynamic attributes.
According to Section 3.1, dynamic attributes are those attributes that are rapidly changing.
For instance, device temperature. According to our approach, attribute instances of the
devices and permissions are translated into device roles. A device role in EGRBAC is a
way to categorize permissions of different devices based on relatively static characteristics.
Whenever permission is assigned to a specific device role, it remains associated with that
role until an administration change is made. It is impossible to activate and deactivate
device roles dynamically or activate and deactivate permissions assignments to different
device roles. For instance, in HABACα we can create a device attribute device_temperature :
d : D ←− {Low, High}. We can easily configure an access policy that authorizes some users
to access a device dx only if device_temperature(dx) = Low. To do so in EGRBAC, we have
two options. The first is to create two device roles, one for high temperature and another
for low temperature for each device. For many devices and dynamic attributes, this option
may lead to a role explosion. The second option is for those devices which have similar
access conditions. We create a device role for low-temperature devices and a device role for
high-temperature devices. However, there is no way to dynamically activate or deactivate
devices membership in different device roles according to their temperatures. Furthermore,
no mechanism in EGRBAC can dynamically activate dx’s high-temperature device role
while deactivating the low-temperature device role when the temperature of drx is high and
vice versa. A similar argument holds when we deal with dynamic user/session attributes.

In the process of constructing the EGRBAC, we did not take into account the following:
(1) Policies that compare two types of attributes. (2) HABACα configurations that involve
user attribute constraints and session attribute constraints. However, this may be a potential
future development.

In Section 5 we conducted a comprehensive theoretical comparison between HABACα

and EGRBAC. We analyzed each model against the access control model criteria adapted
from [9].

Based on the above analysis, a hybrid model that incorporates HABACα and EGRBAC
features is likely to be the most suitable for smart-home IoT, and probably more generally.
Future directions could involve the development of a combined model that will prevent a
“role explosion” while providing access authorizations that cover different users, environment,
operations, or devices characteristics while maintaining the advantages of EGRBAC, such as
ease of access review.
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7. Conclusions

In this paper, we defined the HABACα access control model for smart homes. The
model captures different user, environment, operation, and device characteristics based
on a dynamic, fine-grained ABAC approach. Additionally, we presented two use-case
scenarios for our model and demonstrated its applicability through a proof-of-concept
implementation in Amazon Web Services. Furthermore, we provided a performance test to
demonstrate how our system responds in different scenarios. Based on the evaluation, we
can conclude that our model is applicable and functional.

Moreover, we assessed the theoretical expressiveness power of our model in comparison
to EGRBAC [8], a dynamic contextually aware RBAC-based access control model. We
accomplished this by providing approaches for the conversion of HABACα specifications
into EGRBAC and vice versa. According to our findings, EGRBAC can handle relatively
static attributes of devices and users as well as those of the environment but is incapable of
handling relatively dynamic attributes of users and devices. However, unlike EGRBAC, it
is difficult for HABACα to prevent future authorizations of specific users from accessing
specific operations on particular devices.

Finally, we conducted a comprehensive theoretical comparison between EGRBAC and
HABACα against previously published criteria for access control models. We concluded
that a hybrid model incorporating HABACα and EGRBAC features would be most
appropriate for use in IoT-enabled smart homes, as well as more broadly.
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